

SQL SIMPLIFIED FOR ALL

By Bemnet Girma
linkedin.com/in/bemnetdev

15+ Topics

70+ Practice Queries

50 SQL Query Questions from 15+ Companies

110+ Frequently Asked SQL Interview Questions

IN JUST 10 PAGES

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

KEYWORDS

Data is representation of raw facts, measurements,
figures, or concepts in a formalized manner that have no
specific meaning.

Information is processed (organized or classified) data,
which has some meaningful values.

Database is an organized collection of data stored and
accessed electronically in a computer system.

DBMS are software systems that enable users to store,
retrieve, define and manage data in a database easily.

RDBMS is a type of DBMS that stores data in a row-based
table structure which connects related data elements.

SQL is a database query language used for storing and
managing data in RDBMS.

DATA TYPES

Data type is a data rule applicable to a particular column.
NULL, CHAR, VARCHAR, INT, DATE, FLOAT, BOOLEAN

CONSTRAINTS

Constraints are limitations or restrictions applied to a
column in a table, they are important to maintain data
integrity among tables.

CHECK - control the values being inserted.

NOT NULL - ensure that NULL value has not inserted.

UNIQUE – ensure that every column value is unique.

PRIMARY KEY – ensure that all values are UNIQUE and
 NOT NULL

FOREIGN KEY - create a parent-child r/ship b/n tables

COMMANDS

Data Definition Language (DDL)
DCAT | DROP, CREATE, ALTER, TRUNCATE

Data Query Language (DQL)
SELECT

Data Manipulation Language (DML)
UMID | UPDATE, MERGE, INSERT, DELETE

Data Control Language (DCL)
GRANT and REVOKE

Transaction Control Language (TCL)
COMMIT, SAVEPOINT, ROLLBACK

.

P R E R E Q U I S I T E S

Watch the ff. video to install PostgreSQL DBMS
www.youtube.com/watch?v=CTOpojJPn9M&t=1058s

Use the ff. video to connect DB to Jupyter notebook
www.youtube.com/watch?v=LhKj-_-CCfY

You can get all the queries in my Github repo
www.github.com/bemnetdev/SQL/blob/main/s.ipynb

CREATE TABLE

CREATE - to create a new database object such as a table.

CREATE TABLE department (

 did varchar(20),

 name varchar(20) NOT NULL,

 CONSTRAINT PK_DEPT PRIMARY KEY(did)

);

INSERT DATA

INSERT INTO department VALUES

('D1', 'Management'),

('D2', 'IT'),

('D3', 'Sales'),

('D4', 'HR')

did name

D1 Management

D2 IT

D3 Sales

D4 HR

CREATE “employee” TABLE

CREATE TABLE employee (

 eid int,

 name varchar(20) UNIQUE,

 join_date date NOT NULL,

 department char(2)

 CHECK (dep IN ('D1', 'D2', 'D3')),

 salary int,

 manager int,

 CONSTRAINT PK_ID PRIMARY KEY(eid),

 CONSTRAINT FK_DID FOREIGN KEY(department)

 REFERENCES department(did)

);

eid name join_date dep salary manager

101 David 2009-07-14 D1 50000 None

102 Sam 2010-06-24 D1 40000 101

103 Alicia 2011-05-11 D2 30000 102

104 Alex 2012-04-15 D2 20000 102

105 Robbi 2013-08-14 D2 20000 102

106 Jack 2014-09-19 D3 8000 101

107 Tom 2015-11-12 None 5000 116

108 Lily 2016-07-28 D3 1000 106

CREATE “project” TABLE

CREATE TABLE project (

 person varchar(20),

 proj_name varchar(20),

 job_description varchar(100)

);

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev
person proj_name job description

David Ecommerce generate and manage sales via online channels

Sam Inventory manage location and pricing of inventory

Alicia Inventory manage products that are in storage or transit

Ryan Ecommerce advertising and marketing efforts of a company

Ellen Inventory manage overall operations and help employees

CREATE “sale” TABLE

CREATE TABLE sale (

 category varchar(20),

 brand varchar(20),

 name varchar(50) NOT NULL,

 quantity int CHECK (quantity >= 0),

 price float NOT NULL,

 stock boolean,

 CONSTRAINT PK_CITY PRIMARY KEY(name)

);

category brand name quantity price stock

Phone Apple iPhone 13 4 1300.0 False

Phone Apple iPhone 12 6 1100.0 True

Phone Samsung Galaxy Note 20 5 1200.0 True

Phone Samsung Galaxy S21 4 1100.0 False

Laptop Apple MacBook Pro 13 3 2000.0 True

Laptop Apple MacBook Air 2 1200.0 True

Laptop Dell XPS 13 1 2000.0 False

Laptop Dell XPS 15 2 2300.0 True

Tablet Apple iPad 7th gen 3 560.0 False

Tablet Samsung Galaxy Tab A7 2 220.0 True

DUPLICATE TABLE

Duplicate employee Table with Data

CREATE table Backup AS

SELECT *

FROM employee;

Duplicate employee Table without Data

CREATE table Replica AS

SELECT *

FROM employee

WHERE 1=2;

UPDATE DATA

Update manager of Tom

UPDATE employee

SET manager = 106

WHERE name = 'Tom';

Update department and salary of Lily

UPDATE employee

SET dep = 'D3', salary = 5000

WHERE name = 'Lily';

DELETE DATA

Delete Lily’s record

DELETE FROM Backup

WHERE name = 'Lily';

Delete Alex and Robbi’s record

DELETE from Backup

WHERE name IN ('Alex', 'Robbi');

Delete all records OR Truncate the whole backup data

DELETE FROM Backup;

TRUNCATE TABLE Backup;

DROP TABLE

Drop Backup table

DROP TABLE Backup;

ALTER TABLE

Rename sale table to ‘sales’

ALTER TABLE sale

RENAME TO sales;

Rename dep column to ‘dept’

ALTER TABLE employee

RENAME COLUMN dep TO dept;

Alter dept column data type

ALTER TABLE employee

ALTER COLUMN dept TYPE VARCHAR(2);

Add new column ‘Gender’

ALTER TABLE employee

ADD COLUMN Gender VARCHAR(20);

Add new constraint GEN to Gender column

ALTER TABLE employee

ADD CONSTRAINT GEN

CHECK (Gender IN ('M', 'F'));

Remove GEN constraint

ALTER TABLE employee

DROP CONSTRAINT GEN;

Remove Gender column

ALTER TABLE employee

DROP COLUMN Gender;

DCL COMMANDS

Grant single privilege

GRANT SELECT ON Users TO 'Test';

Grant multiple privilege

GRANT INSERT, UPDATE ON Users TO 'Test';

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

Grant ALL privilege

GRANT ALL ON Users TO 'Test';

Revoke single privilege

REVOKE SELECT ON Users TO 'Test';

Revoke multiple privilege

REVOKE INSERT, UPDATE ON Users TO 'Test';

Revoke ALL privilege

REVOKE ALL ON Users TO 'Test';

TCL COMMANDS

BEGIN and COMMIT Transaction

BEGIN;

DELETE FROM employee

WHERE name = ‘Lily’;

COMMIT;

ROLLBACK to last commit

ROLLBACK;

SAVEPOINT Transaction

SAVEPOINT point;

ROLLBACK to specific saved point

ROLLBACK point;

OPERATORS

Fetch three employees who earn more than 10000

Comparison (=, >, <, <=, >=, !=), Order by and Limit

SELECT name, salary

FROM employee

WHERE salary > 10000

ORDER BY name

LIMIT 3;

name salary

Alex 20000

Alicia 30000

David 50000

Fetch products in stock with price range 1000 to 1500

Between, Order by (Descending) AND, IN

SELECT name, brand, price stock

FROM sales

WHERE price BETWEEN 1000 AND 1500

AND stock IN ('1')

ORDER BY name DESC;

name brand price stock

iPhone 12 Apple 1100.0 True

MacBook Air Apple 1200.0 True

Galaxy Note 20 Samsung 1200.0 True

.

https://platform.stratascratch.com/coding/9688-
churro-activity-date?code_type=1

.

https://platform.stratascratch.com/coding/1000
3-lyft-driver-wages?code_type=1

.

https://platform.stratascratch.com/coding/9924-
find-libraries-who-havent-provided-the-email-
address-in-2016-but-their-notice-preference-
definition-is-set-to-email?code_type=1

Fetch employees not in department D2 and
name either starts with ‘j’ or not end with ‘y’

LIKE – STARTING, LIKE – ENDING, NOT IN, NOT LIKE, OR

SELECT name, dept

FROM employee

WHERE dept NOT IN ('D2')

AND (name LIKE ('j%') OR name NOT LIKE ('%y'));

name dept

David D1

Sam D1

Jack D3

.
https://platform.stratascratch.com/coding/9972-
find-the-base-pay-for-police-
captains?code_type=1

.

https://platform.stratascratch.com/coding/1002
6-find-all-wineries-which-produce-wines-by-
possessing-aromas-of-plum-cherry-rose-or-
hazelnut?code_type=1

DATE FUNCTIONS

Fetch employee data who join on April

Extract year, month, day, hour, minute, second from date

SELECT *

FROM employee

WHERE EXTRACT(MONTH FROM join_date) = '04';

eid name join_date dep salary manager

104 Alex 2012-04-15 D2 20000 102

Fetch todays date

To_Char convert number & date to a character string.

SELECT TO_CHAR(CURRENT_DATE, 'Month dd, yyyy')

AS todays_date;

todays_date

October 10, 2022

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

DISTINCT

Fetch all brands in sales table

SELECT DISTINCT brand

FROM sales;

brand

Apple

Samsung

Dell

.
https://platform.stratascratch.com/coding/9650-
find-the-top-10-ranked-songs-in-
2010?code_type=1

CASE STATEMENT

Categorize employees based on their salary

SELECT name, salary,

 CASE WHEN salary >= 30000 THEN 'High'

 WHEN salary BETWEEN 10000 AND 30000 THEN 'Mid'

 WHEN salary < 10000 THEN 'Low'

 END AS Range

FROM employee

ORDER BY 2 DESC;

name salary Range

David 50000 High

Sam 40000 High

Alicia 30000 High

Alex 20000 Mid

Robbi 10000 Mid

Jack 8000 Low

Tom 5000 Low

Lily 5000 Low

.

https://platform.stratascratch.com/coding/9726-
classify-business-type?code_type=1

.

https://platform.stratascratch.com/coding/9781-
find-the-rate-of-processed-tickets-for-each-
type?code_type=1

SET

Fetch employees from Management & involve on projects

SELECT name

FROM employee

WHERE dept = 'D1'

UNION

SELECT person

FROM project;

name

Alicia

David

Ellen

Ryan

Sam

Fetch only employees who work on projects

SELECT name

FROM employee

INTERSECT

SELECT person

FROM project;

name

Alicia

David

Sam

Fetch person who is not an employee but work on project

SELECT person

FROM project

EXCEPT

SELECT name

FROM employee;

person

Ellen

Ryan

JOIN

INNER JOIN

Fetch all IT employees name wrt their department

SELECT E.name, D.name as department

FROM employee E

INNER JOIN department D

ON E.dept = D.did

WHERE D.name = 'IT';

name department

Alicia IT

Alex IT

Robbi IT

.
https://platform.stratascratch.com/coding/1008
7-find-all-posts-which-were-reacted-to-with-a-
heart?code_type=1

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev
.

https://platform.stratascratch.com/coding/9913-
order-details?code_type=1

.

https://platform.stratascratch.com/coding/9894-
employee-and-manager-salaries?code_type=1

.

https://platform.stratascratch.com/coding/1007
8-find-matching-hosts-and-guests-in-a-way-that-
they-are-both-of-the-same-gender-and-
nationality?code_type=1

.

https://platform.stratascratch.com/coding/1032
2-finding-user-purchases?code_type=1

LEFT OUTER JOIN
Fetch all project name with respected employee name

SELECT E.name, P.proj_name

FROM project P

LEFT JOIN employee E

ON E.name = P.person;

name proj_name

David Ecommerce

Sam Inventory

Alicia Inventory

None Ecommerce

None Inventory

.

https://platform.stratascratch.com/coding/9891-
customer-details?code_type=1

RIGHT OUTER JOIN
Fetch all employee name wrt projects they are working

SELECT E.name, P.proj_name

FROM project P

RIGHT JOIN employee E

ON E.name = P.person;

name Proj_name

Alex None

Alicia Inventory

David Ecommerce

Jack None

Lily None

Robbi None

Sam Inventory

Tom None

FULL OUTER JOIN (LEFT JOIN UNION RIGHT JOIN)

Fetch all employee with their correlated projects

SELECT E.name, P.proj_name

FROM project P

FULL JOIN employee E

ON E.name = P.person;

name Proj_name

None Ecommerce

None Inventory

Alex None

Alicia Inventory

David Ecommerce

Jack None

Lily None

Robbi None

Sam Inventory

Tom None

CROSS JOIN
Give 500 bonus for all employees

CREATE “Advance” TABLE

bonus

500

SELECT E.name, E.salary, A.bonus,

(E.salary + A.bonus) as Net_Salary

FROM employee E

CROSS JOIN Advance A;

name salary bonus Net_Salary

David 50000 500 50500

Sam 40000 500 40500

Alicia 30000 500 30500

Alex 20000 500 20500

Robbi 10000 500 10500

Jack 8000 500 8500

Tom 5000 500 5500

Lily 5000 500 5500

SELF JOIN
Fetch all employee name with their manager

SELECT E.name, M.name as Manager

FROM employee as M

JOIN employee as E

ON M.eid = E.manager;

name Manager

Sam David

Alicia Sam

Alex Sam

Robbi Sam

Jack David

Tom Jack

Lily Jack

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

NATURAL JOIN
SQL will Decide What Is the Join Condition by Itself.

 If there is no matching column name between two

tables it will perform CROSS JOIN.

 If there is one common column between two

tables It will perform INNER JOIN.

 If there is more than one common column between

two tables It will perform INNER JOIN with ALL

common columns.

CONCATINATE

Create a mail address for all employees using their
name and department with lowercase & @tcs.in domain.

SELECT DISTINCT (LOWER(E.name)||'.

'||LOWER(SUBSTRING(D.name, 0, 6))||'@tcs.in')

AS Email, E.name

AS Emp_name, D.name

AS Department

FROM employee E

JOIN department D ON D.did = E.dept;

Email Emp_name Department

david.manag@tcs.in David Management

sam.manag@tcs.in Sam Management

alicia.it@tcs.in Alicia IT

alex.it@tcs.in Alex IT

robbi.it@tcs.in Robbi IT

jack.sales@tcs.in Jack Sales

lily.sales@tcs.in Lily Sales

.
https://platform.stratascratch.com/coding/9942-
largest-olympics?code_type=1

GROUP BY AND AGGREGATION FUNCTIONS

Fetch total employee, min, max, average & total salary
of each department which have less than 3 employees.
Count, Min, Max, Avg, Sum, Group by, Having

SELECT D.name, COUNT(1) AS emp,

MIN(E. salary) AS Min,

MAX(E. salary) AS Max,

AVG(E. salary) AS Avg,

SUM(E. salary) AS Total

FROM employee E

JOIN department D ON D.did = E.dept

GROUP BY D.name

HAVING COUNT(1) < 3;

Name emp Min Max Avg Total

Management 2 40000 50000 45000 90000

Sales 2 5000 8000 6500 13000

ORDER OF EXECUTION

FROM -> JOIN -> WHERE -> GROUP BY -> HAVING

-> SELECT -> DISTINCT -> ORDER BY -> LIMIT

https://platform.stratascratch.com/coding/1012
8-count-the-number-of-movies-that-abigail-
breslin-nominated-for-oscar?code_type=1

https://platform.stratascratch.com/coding/1029
9-finding-updated-records?code_type=1

.
https://platform.stratascratch.com/coding/1017
6-bikes-last-used?code_type=1

.

https://platform.stratascratch.com/coding/1006
1-popularity-of-hack?code_type=1

.
https://platform.stratascratch.com/coding/9992-
find-artists-that-have-been-on-spotify-the-most-
number-of-times?code_type=1

.
https://platform.stratascratch.com/coding/9622-
number-of-bathrooms-and-
bedrooms?code_type=1

.
https://platform.stratascratch.com/coding/9653-
count-the-number-of-user-events-performed-by-
macbookpro-users?code_type=1

.

https://platform.stratascratch.com/coding/1015
6-number-of-units-per-nationality?code_type=1

.

https://platform.stratascratch.com/coding/1004
8-top-businesses-with-most-reviews?code_type=1

.
https://platform.stratascratch.com/coding/9915-
highest-cost-orders?code_type=1

.

https://platform.stratascratch.com/coding/1004
9-reviews-of-categories?code_type=1

.

https://platform.stratascratch.com/coding/9991-

top-ranked-songs?code_type=1

.
https://platform.stratascratch.com/coding/9728-
inspections-that-resulted-in-
violations?code_type=1

.

https://platform.stratascratch.com/coding/9782-
customer-revenue-in-march?code_type=1

UNNEST AND STRING_TO_ARRAY
Fetch occurrence of words in job description which is > 1
STRING_TO_ARRAY splits a string on a specified delimiter
character and returns an array.
UNNEST convert array in to records.

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

SELECT UNNEST(string_to_array(job_description, ' '))

AS word, COUNT(1) AS counter

FROM project

GROUP BY word

HAVING COUNT(1) > 1

ORDER BY counter DESC;

word counter

manage 4

and 4

of 2

SUBQUERIES

SCALAR SUB QUERY
Fetch name and salary of employee who earn more than
average of total salary
The sub query always returns one row and one column

SELECT name, salary

FROM employee

WHERE salary > (

 SELECT AVG(salary)

 FROM employee

);

name salary

David 50000

Sam 40000

Alicia 30000

.

https://platform.stratascratch.com/coding/1030
8-salaries-differences?code_type=1

.

https://platform.stratascratch.com/coding/1035
3-workers-with-the-highest-salaries?code_type=1

MULTIPLE ROW SUB QUERY
The sub query always returns multiple row.

Find department which do not have any employees
One column multiple rows

SELECT *

FROM department

WHERE did NOT IN (

 SELECT DISTINCT(dept)

 FROM employee

 WHERE dept IS NOT NULL

);

did department

D4 HR

Employees who earn highest salary in each department
Multiple column multiple rows

SELECT name, salary, dept

FROM employee

WHERE (dept, salary) IN (

 SELECT dept, MAX(salary)

 FROM employee

 GROUP BY dept

);

name salary dept

David 50000 D1

Alicia 30000 D2

Jack 8000 D3

.

https://platform.stratascratch.com/coding/1007

7-income-by-title-and-gender?code_type=1

.
https://platform.stratascratch.com/coding/9897-
highest-salary-in-department?code_type=1

https://platform.stratascratch.com/coding/9814-
counting-instances-in-text?code_type=1

CORRELATED SUBQUERY
Find the employees in each department who earn more
than the average salary in that department
sub query which is related to outer query like recursion.

SELECT name, dept, salary

FROM employee E1

WHERE salary > (

 SELECT AVG(salary)

 FROM employee E2

 WHERE E2.dept = E1.dept

);

name dept salary

David D1 50000

Alicia D2 30000

Jack D3 8000

.
https://platform.stratascratch.com/coding/9663-

find-the-most-profitable-company-in-the-
financial-sector-of-the-entire-world-along-with-
its-continent?code_type=1

.

https://platform.stratascratch.com/coding/1006
0-top-cool-votes?code_type=1

https://platform.stratascratch.com/coding/1030
0-premium-vs-freemium?code_type=1

NESTED SUBQUERY
Find brand which sales are better than the average of
total sales across all brands
The sub query has another sub query.

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

SELECT *

FROM (

 SELECT brand, SUM(price) AS Total_Sales

 FROM sales

 GROUP BY brand) sales

 JOIN (

 SELECT AVG(Total_Sales) AS SALES

 FROM (

 SELECT brand, SUM(price) AS Total_Sales

 FROM sales

 GROUP BY brand) X

) AVG_SALES

 ON SALES.Total_Sales > AVG_SALES.Sales;

brand Total_Sales SALES

Apple 6160.0 4326.666666666666

WE CAN USE DIFFERENT CLAUSES INSIDE SUB QUERIES

[WITH (CTE), SELECT, FROM, WHERE, HAVING]

Why do we write same query twice let’s use "with" clause?

Step 1: Find total sales per each brand (TSPB)

Step 2: Find average sales wrt all brands (ASPAB)

Step 3: Find brand where TSPB > ASPAB

WITH Total_Sales (brand, TSPB) AS

 (SELECT S.brand, SUM(price) AS TSPB

 FROM sales S

 GROUP BY S.brand),

 AVG_SALES (ASPAB) AS

 (SELECT AVG(TSPB) AS ASPAB

 FROM Total_Sales)

SELECT *

FROM Total_Sales TS

JOIN AVG_SALES AV

ON TS. TSPB > AV.ASPAB;

brand TSPB ASPAB

Apple 6160.0 4326.666666666666

ADVANTAGES OF USING WITH CLAUSE

 Easily readable

 Easier to maintain and debug

 Improvement of performance

USE WITH CLAUSE WHEN YOU ARE

 trying to use a particular subquery multiple times.

 writing a very complex SQL query and it becomes
difficult to read and understand.

 interested in a particular record from big table data.

SQL COMMANDS WHICH ALLOW SUB QUERIES

[INSERT, UPDATE, DELETE]

.

https://platform.stratascratch.com/coding/1006
4-highest-energy-consumption?code_type=1

.
https://platform.stratascratch.com/coding/9905-
highest-target-under-manager?code_type=1

.

https://platform.stratascratch.com/coding/1035
2-users-by-avg-session-time?code_type=1

.

https://platform.stratascratch.com/coding/1028
5-acceptance-rate-by-date?code_type=1

.

https://platform.stratascratch.com/coding/1028
4-popularity-percentage?code_type=1

.

https://platform.stratascratch.com/coding/9632-
host-popularity-rental-prices?code_type=1

WINDOW /ANALYTIC/ FUNCTION

Whenever we are using a window function, we
1. can create partitions using by grouping then
2. apply any window function to each of those partitions.

ROW NUMBER

Give roll number to all employees with and without dept

SELECT E.eid, E.name, E.dept,

ROW_NUMBER() OVER() AS Roll,

ROW_NUMBER() OVER(PARTITION BY dept) AS Rp

FROM employee E;

eid name dept Roll Rp

101 David D1 1 1

102 Sam D1 2 2

103 Alicia D2 3 1

104 Alex D2 4 2

105 Robbi D2 5 3

106 Jack D3 6 1

108 Lily D3 7 2

107 Tom None 8 1

Fetch 1st employees from each dept to join the company

SELECT * FROM (

 SELECT E.eid, E.name, E.join_date, E.dept,

 ROW_NUMBER() OVER(PARTITION BY dept)

 AS RNO

 FROM employee E) X

WHERE X.RNO < 2;

eid name Join_date dept RNO

107 Tom 2015-11-12 None 1

101 David 2009-07-14 D1 1

103 Alicia 2011-05-11 D2 1

106 Jack 2014-09-19 D3 1

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

RANK and DENSE_RANK

Rank all employees in each department based on their
salary with and without duplicate rank skipping

SELECT E.eid, E.name, E.dept, E.salary,

RANK() OVER(ORDER BY salary DESC) AS RNK,

DENSE_RANK() OVER(ORDER BY salary DESC) AS Dr

FROM employee E;

eid name dept salary RNK Dr

101 David D1 50000 1 1

102 Sam D1 40000 2 2

103 Alicia D2 30000 3 3

104 Alex D2 20000 4 4

105 Robbi D2 20000 5 4

106 Jack D3 8000 6 5

107 Tom None 5000 7 6

108 Lily D3 5000 7 6

.

https://platform.stratascratch.com/coding/9680-
most-profitable-companies?code_type=1

.

https://platform.stratascratch.com/coding/1015
9-ranking-most-active-guests?code_type=1

.
https://platform.stratascratch.com/coding/1004
6-top-5-states-with-5-star-
businesses?code_type=1

.

https://platform.stratascratch.com/coding/514-
marketing-campaign-success-
advanced?code_type=1

LAG and LEAD

Fetch a query to display if the salary of an employee is
higher, lower or equal to previous and next employee
LAG extracts previous record.
LEAD extracts the next record.

WITH COMP AS (

 SELECT E.eid, E.name, E.dept, E.salary,

 LAG(salary) OVER(ORDER BY eid) AS P_SAL,

 LEAD(salary) OVER(ORDER BY eid) AS N_SAL

 FROM employee E)

SELECT *,

CASE WHEN salary > P_SAL THEN 'HIGH'

 WHEN salary < P_SAL THEN 'LOW'

 WHEN salary = P_SAL THEN 'SAME'

END P_Co,

CASE WHEN salary > N_SAL THEN 'HIGH'

 WHEN salary < N_SAL THEN 'LOW'

 WHEN salary = N_SAL THEN 'SAME'

END N_Co

FROM COMP;

name dept salary P_SAL N_SAL P_Co N_Co

David D1 50000 None 40000 None HIGH

Sam D1 40000 50000 30000 LOW HIGH

Alicia D2 30000 40000 20000 LOW HIGH

Alex D2 20000 30000 20000 LOW SAME

Robbi D2 20000 20000 8000 SAME HIGH

Jack D3 8000 20000 5000 LOW HIGH

Tom None 5000 8000 5000 LOW SAME

Lily D3 5000 5000 None SAME None

.

https://platform.stratascratch.com/coding/1031
9-monthly-percentage-difference?code_type=1

FIRST_VALUE and LAST_VALUE

Query to display the most & least expensive product
under each category (corresponding to each record)
FIRST_VALUE extracts first record of the partition.
LAST_VALUE extracts last record of the partition.

SELECT category, name, price,

FIRST_VALUE(name)

OVER(PARTITION BY category

ORDER BY price DESC) AS Expensive,

LAST_VALUE(name)

OVER(PARTITION BY category

ORDER BY price DESC) AS Cheap

FROM sales;

category name price Expensive Cheap

Laptop XPS 15 2300 XPS 15 XPS 15

Laptop MacBook Pro 2000 XPS 15 XPS 13

Laptop XPS 13 2000 XPS 15 XPS 13

Laptop MacBook Air 1200 XPS 15 MacBook Air

Phone iPhone 13 1300 iPhone 13 iPhone 13

Phone Galaxy Note 1200 iPhone 13 Galaxy Note

Phone iPhone 12 1100 iPhone 13 iPhone 12

Phone Galaxy S21 1100 iPhone 13 Galaxy S21

Tablet ipad 7th gen 560 ipad 7th gen ipad 7th gen

Tablet Galaxy Tab A7 220 ipad 7th gen Galaxy Tab A7

But, the above result is not correct for cheap column. That
is b/c of default frame clause SQL is using. What is frame?

FRAME CLAUSE

Fetch least expensive product of each category
Inside each partitions we can again create some subset of
records which is called as frames. So basically a frame is
a subset of a partition.

NB: Default FRAME CLAUSE is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. This
means our frame is all records between first record and
current record.

Not every window function will really be impacted by this
default FRAME CLAUSE, It generally impacts the last_value,
nth_value and almost all aggregate functions.

SQL SIMPLIFIED FOR ALL linkedin.com/in/bemnetdev

SELECT category, brand, name, price,

FIRST_VALUE(name) OVER(PARTITION BY category

SELECT category, brand, name, price

FROM (

 SELECT *,

 LAST_VALUE(name)

 OVER(PARTITION BY category

 ORDER BY price DESC

 RANGE BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING) AS cheap

 FROM sales) X

WHERE NAME = cheap;

category brand name Price

Laptop Apple MacBook Air 1200

Phone Samsung Galaxy S21 1100

Tablet Samsung Galaxy Tab A7 220

.
https://platform.stratascratch.com/coding/9917-
average-salaries?code_type=1

DIFFERENCE BETWEEN ROWS AND RANGE
We can use the interchangeably unless that particular
row has some other rows with duplicated values.

rows between unbounded preceding and current row

 For ROWS, LAST_VALUE is the exact current row

range between unbounded preceding and current row

 For RANGE, LAST_VALUE is the last row

category name Price last_by_range last_by_rows

Phone iPhone 13 1300 iPhone 13 iPhone 13

Phone Galaxy Note 20 1200 Galaxy Note 20 Galaxy Note 20

Phone iPhone 12 1100 Galaxy S21 iPhone 12

Phone Galaxy S21 1100 Galaxy S21 Galaxy S21

NTH_VALUE

Fetch the 2nd most expensive product of each category
It access Nth record of the partition

SELECT category, brand, name, price

FROM (

 SELECT *,

 NTH_VALUE(name, 2)

 OVER(PARTITION BY category

 ORDER BY price DESC

 RANGE BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING) AS cheap

 FROM sales) X

WHERE NAME = cheap;

category brand name Price

Laptop Apple MacBook Pro 13 2000

Phone Samsung Galaxy Note 20 1200

Tablet Samsung Galaxy Tab A7 220

NTILE

Segregate all phones into expensive, midrange & cheap
It segregate records of the partition into N no. of buckets

SELECT brand, name,

CASE WHEN X.BUCKETS = 1 THEN 'EXPENSIVE'

 WHEN X.BUCKETS = 2 THEN 'MIDRANGE'

 WHEN X.BUCKETS = 3 THEN 'CHEAP'

END PRICE_RANGE

FROM (

 SELECT *,

 NTILE(3)

 OVER(ORDER BY price DESC) AS BUCKETS

 FROM sales

 WHERE category = 'Phone') X;

brand name PRICE_RANGE

Apple iPhone 13 EXPENSIVE

Samsung Galaxy Note 20 EXPENSIVE

Apple iPhone 12 MIDRANGE

Samsung Galaxy S21 CHEAP

CUME_DIST / CUMMULATIVE DISTRIBUTION /

Fetch all products which are constituting the first 30% of
the data in products table based on price
It identify the distribution percentage of each record wrt
all the rows. Value of CUM_DIST is in range b/n 0 & 1.

SELECT brand, category, name, (cd||'%') AS cd

FROM (

 SELECT *, ROUND(

 CUME_DIST()

 OVER(ORDER BY price DESC)::numeric*100,2) AS cd

 FROM sales) X

WHERE cd <= 30;

category brand name cd

Laptop Dell XPS 15 10%

Laptop Apple MacBook Pro 13 30%

Laptop Dell XPS 13 30%

PERCENT_RANK - It is like percentile.

Write a Query to identify how much percentage more
expensive is "iPhone 13" when compared to all products

SELECT category, brand, name, Perc

FROM (

 SELECT *,

 PERCENT_RANK()

 OVER(ORDER BY price) AS PER_RANK,

 ROUND(PERCENT_RANK()

 OVER(ORDER BY price)::numeric*100,2) AS Perc

 FROM sales) X

WHERE name = 'iPhone 13';

category brand name perc

Phone Apple iPhone 13 66.67

.
FREQUENTLY ASKED SQL INTERVIEW QUESTIONS

https://www.edureka.co/blog/interview-
questions/sql-interview-questions

